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Abstract

A complete understanding of the LIGO detectors’ ability to accurately measure
spin parameters is of key importance to understanding the astrophysics of binary black
hole systems. Of particular significance is an ability to determine spin orientations as a
means of distinguishing between binary formation models. In this work we overview the
core physics of gravitational waves, relativistic precession in binary systems, the LIGO
detectors, and the techniques involved in parameter estimation. We then examine the
specific effects of precession on a gravitational waveform. The technique of ’matching’
between waveforms is used as a computationally cheap way to explore degeneracies
in the parameter space. A series of signals are then injected into simulated detector
noise, and a full parameter estimation is performed on the data segments. Using the
match results as a guide, we target these injections to areas in the parameter space
where we expect to be particularly sensitive and insensitive to spin parameters. A
total of 20 signals with χp = 0.9 across a full range of inclinations were injected and
recovered, with all but 5 results having the injected value of χp excluded, and even
in these cases the value of χp is consistently underestimated. Comparisons between
the match and inference results suggest that matching is not a successful predictor of
the inference results, and intrinsic degeneracies in the waveforms are suggested as the
source of the inaccuracy. Finally we briefly examine the impact of the Virgo detector
on spin estimation, and present results that indicate that the impact will be marginal.
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1 Introduction

1.1 A Brief History

The first[1] and subsequent[2] observations of gravitational waves (GWs) came around the
centenary of Einstein’s theoretical prediction of their existence[3][4]. Einstein noticed that
a solution to the linearised approximations of his field equations took the form of a wave
equation[5], and that the source of these waves would be an asymmetric, massive, rotating
system, such as a binary star system. As the amplitude of the waves was predicted to be
so incredibly weak, with strain amplitudes on the order of 10−24, at the time there was
no hope of ever actually detecting them, and Einstein even questioned whether they were
physically real at all[6]. Observations of the Hulse-Taylor pulsar (PSR 1913+16)[7] showed
that the energy loss of the binary agreed perfectly with the rate predicted by gravitational
wave emission, providing indirect evidence of GWs and resulting in the award of the 1993
Nobel Prize in Physics, but it was not until the construction of the Laser-Interferometric
Gravitational wave Observatory (LIGO) that direct detection of gravitational waves be-
came possible - a truly remarkable feat of science and engineering involving the most precise
measurements ever made by several orders of magnitude.

Now that the existence of gravitational waves has been confirmed and their detection
is possible we enter a new era of astronomy, and it is difficult to overstate the wealth of
science that is now attainable in the coming decades. Gravitational waves can be used to
study astrophysical phenomena that cannot be observed using electromagnetic radiation,
such as binary black hole (BBH) systems where two inspiralling black holes merge into one,
as well as being used in conjunction with electromagnetic observations in ’multi-messenger’
astronomy where events such as supernovae and gamma ray bursts are thought to release
both gravitational and electromagnetic radiation which can be studied in conjunction with
one another[8][9]. In addition GWs can be used to conduct the closest tests of general
relativity (GR) to date[10][11] as well as to further inform the ongoing development of
quantum gravity models[12]. Currently the LIGO network consists of two detectors, one
in Hanford WA (H1), one in Livingston LA (L1), however there are three detectors that
will be added to the network in the coming years, with Virgo (V1) in Italy due to come
online by the end of 2017, and with LIGO India and KAGRA joining later. In addition to
this, there are also proposals underway for a space-based gravitational wave observatory,
the Laser Interferometric Space Antenna (LISA)[13] which would be able to explore a
different frequency-range and therefore study a range of different astrophysical objects to
those observed using earth-based detectors.

This project focuses on studying the merging of a binary system, known as a compact
binary coalesence (CBC). This term includes the merging of binary neutron star systems
and neutron star-black hole systems, but in this work we focus on the merging of BBHs,
where we do not consider the internal structure of the compact binary objects unlike in
the case of systems involving neutron stars. We focus on parameter estimation of BBH
mergers, with a specific emphasis on inferring the spin parameters of the component BHs
in systems where the spins are misaligned, and how they can be determined though careful
analysis of LIGO data.

The work is structured as follows; first we present an overview of gravitational wave
theory and the LIGO detectors. We then discuss the process of parameter estimation and
the mathematical and computational techniques that are used. Next we consider the case
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of systems with misaligned spins where relativistic precession is manifested, and consider
the specific set of challenges this raises for signal analysis and parameter estimation. The
astrophysical significance of studying precessing systems is also discussed. In chapter 2 we
introduce the concept of ’matching’ as a method for quantifying the degenerecy between
different waveforms with minimal computational effort, and use these matches to identify
the parts of the parameter space that would be most fruitful to explore. In chapter 3
we describe the process of software injections, where simulated signals are inserted into
detector noise and then recovered using the inference methods described in the introduc-
tion. This gives a way of probing the detector response to a given signal. We present
results from a range of software injections guided by the match findings, and attempt to
analyse how effectively the current infrastructure is capable of inferring spin parameters on
precessing BBHs. Finally we briefly consider the impact of the upcoming Virgo detector
on spin inference. The majority of the computational tasks involved in this work are per-
formed in the PyCBC environment[14], including the generation of waveforms, simulations
of the detector response to gravitational waves, finding the matches between waveforms
and running inference on data segments.

1.2 Gravitational waves and their sources

A complete analysis is available in Hartle[15], but here we briefly overview the fundamental
theory of gravitational waves. In the general theory of relativity, gravity is a consequence
of the curvature of a 4-dimensional spacetime as described by the Einstein equation (in
natural units):

Rαβ −
1

2
gαβR = 8πTαβ (1)

where Rαβ is the Riemannian curvature tensor, gαβ is the metric tensor, R is the Ricci
scalar and Tαβ is the energy-momentum tensor. This equation is essentially ten non-linear
partial differential equations, where we use the Einstein summation convention to sum over
all indices, and where indices run from 0 to 4 and all tensors are symmetric. Intuitively,
the LHS of this equation can be thought of as the local curvature of spacetime, and the
RHS quantifies the energy and momentum density. In the weak-field regime, where the
curvature of spacetime is low, the metric tensor can be approximated as

gαβ(x) = ηαβ + hαβ(x). (2)

where ηαβ is the Minkowski metric and |hαβ| � 1 for all components. This metric can be
substituted into the Einstein equation, and expanding in hαβ in first order and using the
Lorentz gauage, the Einstein equation becomes

�hαβ = 0 (3)

where � is the D’Alembertian operator, with the condition that

∂βh
β
α −

1

2
∂αh

β
β = 0. (4)

The general solution to this equation is

hαβ =


0 0 0 0
0 a+ a× 0
0 a× −a+ 0
0 0 0 0

 eiω(z−t) (5)
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for a wave with frequency ω propagating in the z direction. Here the a+ and a× terms
represent the amplitudes of the ’plus’ and ’cross’ polarisations respectively. As a gravita-
tional wave passes through an observer, spacetime is distorted along the spatial directions
orthogonal to the propagation direction of the wave according to these polarisation am-
plitudes. A visualisation of this is shown in Fig. 1. It is this stretching and squeezing of
spacetime that the LIGO detectors were built to detect.

Figure 1: [16]Plus and cross polarisations respectively of a gravitational wave propagating
through the page, with scale greatly exagerrated.

Figure 2: [17]Impression of two inspiralling compact objects emitting gravitational waves

Now we consider the sources of these waves. Analysis in this area can rapidly become
extremely complicated as the weak-field approximation is dropped and higher orders of
perturbations are included[18], but the simplest case is still instructive. Approximating
that the field around the source is still weak, that the wavelength is long and that the
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Figure 3: Simulated waveform of a BBH merger of two 35 solar mass black holes.

observer is a large distance from the source, the spatial elements of the GW metric are

hij ≈
2

r
Ïij(t− r) (6)

where Iij is the second mass moment given by

Iij(t) =

∫
d3xµ(t, ~x)xjxj (7)

where µ(t, ~x) is the mass density of the system. The energy loss of a binary system emitting
gravitational waves is

LGW =
128

5
M2R4Ω6, (8)

and as the binary loses energy, the separation between the compact objects decreases,
increasing the orbital frequency. Given the connection between the mass distribution of
the system in (7) and the GW amplitudes in (6), this gives rise to a ’chirp’ effect seen in
the signal of a CBC GW. This is shown in a Fig. 3. which is a simulated waveform of the
merging of a BBH system.

The waveform can be split into three phases - the inspiral, the merger and the ringdown.
The frequency, frequency evolution and amplitudes of each polarisation of the GW emitted
from a merger will depend on the properties of the system itself, and as such there is
information about the source contained in the specific morphology of a GW signal.

1.3 LIGO

The fundamental physical principle of the LIGO detectors is that they are laser interfer-
ometeres. Interferometers are devices that can measure extremely small changes in length
to high accuracy using constructive and destructive interference, as shown in Fig. 4. Light
leaves the laser beam, and is split down the two arms of the detector by the beam splitter.
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Figure 4: Simplified schematic of a LIGO detector[19] showing noise curves and detector
location

Figure 5: [20]Noise curve for advanced LIGO detectors.
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If the length of the two arms is equal, the optical path difference between the two light
beams is zero, and the two beams constructively interfere after recombining at the beam
splitter. However if there is any change in the length of one of the arms, the beams will
no longer constructively interfere and the photodetector will register a change in inten-
sity. As a gravitational wave passes through the detector, the relative length of the arms
changes, and the GW signal is recorded by the photodiode. A large part of the scientific
and engineering effort at LIGO involves techniques to minimise and account for noise in
the system, and the recent advanced LIGO upgrade to the detectors increased the effective
volume within which mergers can be detected by an order of magnitude[21][22]. Some of
these techniques include suspending the mirrors from a series of pulleys and penduli, and
applying real time corrections to the positions of the mirrors to compensate for external
seismic noise. There is also considerable effort in managing the optics and lasers of the
system in order to maximise the coherence of the laser beam and the intensity detected in
the photodiode[23]. The noise spectrum for advanced LIGO is shown in Fig. 5.[24], where
the sharp noise peaks are specifically designed resonances that are removed from the strain
data during signal processing. The strain data observed in the detector is a function of the
different polarisation amplitudes

h(t) = F+(α, δ, ψ)h+(t) + F×(α, δ, ψ)h×(t), (9)

where F+(α, δ, ψ) and F x(α, δ, ψ) are the antenna beam patterns that describe how the
detector responds to signals at different sky locations and polarisations[25]. In first order,
the polarisations are given by

h+(t) = AGW (t)(1 + cos2(ι) cos(φ(t))) (10)

h×(t) = −2AGW (t) cos(ι) sin(φ(t)) (11)

and binaries that are face on (with ι = 0) emit circularly polarised waves, and edge-on
binaries emit linearly (either cross or plus) polarised GWs. On completion of the advanced
LIGO upgrade in 2015 the network had a detection band of 10-7000 Hz, allowing BBH
mergers to be detected up to a redshift of z=0.4[23]. A variety of search algorithms con-
tinuously scan the data for a variety of signals[26][27] using tailored triggers and template
banks depending on the kind of search being conducted. Once a candidate signal is identi-
fied, the data around the event is then separated, and a more targeted and computationally
intensive parameter estimation analysis is performed on it.

1.4 Parameter estimation

A signal is described by a total of 16 parameters[28] - time and phase of coalesence tc
and φc, two parameters to describe sky location (right ascension, α and declination δ),
luminosity distance DL, inclination angle ι describing the orientation of the binary’s total
angular momentum with respect to the line of sight, polarisation angle ψ which mixes plus
and cross polarisations by h = h+ cosψ+h× sinψ, the masses m1, m2, six spin parameters
to totally describe the spins on each of the two black holes ~S1, ~S2, and then two eccentricity
parameters. In this work we ignore the eccentricity parameters and consider only circular
orbits for the sake of constraining the size of the already large parameter space, although
the effect of these parameters is an area of active research. The masses and spins of
the component black holes are intrinsic parameters which determine the morphology of
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the waveform, and the remaining are extrinsic parameters. The maximum spin a black
hole can have is m2 in natural units, so the convention is to use a dimensionless spin
magnitude a = |~S|/m2 ≤ 1. In the first order, the frequency evolution of the ’chirp’ signal
is approximated by a combination of the masses known as a the chirp mass

M =
(m1m2)3/5

(m1 +m2)1/5
∝
(
f−11/3ḟ

)3/5

(12)

so the specific morphology of the waveform is in some sense determined by a combination
of the total mass and the mass ratio. We also define the total mass M = m1 + m2,
and the mass ratio q = m2/m1 adopting the convention that m1 ≥ m2, so 0 < q ≤ 1.
Conventionally, systems with a high mass difference are referred to as ’high mass ratio’
binaries despite the fact that the mass ratio q would actually be low.

Given that so many parameters, many of them extrinsic, describe only two sets of
timeseries data (one from each detector), parameter estimation is a challenging task and
the parameter space is both enormous and wrought with degenerecies. Two of the more
thoroughly researched degenerecies are those between total mass, distance and inclination,
as all three parameters scale the amplitude of the signal and between mass and spin[29],
which is a degenerecy that arises out of post-Newtonian (PN) theory.

The qualitative idea behind current methods of parameter estimation is that the GW
signal is processed and extracted from the raw strain data, and then matched against an
array of simulated waveforms to find which waveform most closely resembles the detected
signal. The two technical challenges here are quantifying how well a template represents
the observed signal, and how to efficiently sample the parameter space for new templates
to test against the data. Within LIGO a standard method for quantifying the similarity
between two signals h1(t) and h2(t) is given by the noise weighted inner product, also
referred to as the ’match’ between signals, and is defined as

〈h1(t)|h2(t)〉 = 2

∫ ∞
flow

h̃∗1(f)h̃2(f) + h̃1(f)h̃∗2(f)

Sn(f)
df (13)

where h̃(f) is the Fourier transform of the signal h(t), and Sn(f) is the noise curve of the
detector[30]. Here flow is the minimum frequency cutoff, which in this paper we set to
20Hz throughout. It is also convenient here to define the term mismatch, which is simply
1 − m where m is the match. A variety of methods have been employed to sample the
parameter space, including nested sampling[31] and analysis using Gaussian wavelets[28],
and in this work we use a framework of Bayesian inference and Markov-Chain Monte Carlo
methods[32][33][34]. This process results in a set of posterior distribution functions (PDFs)
for each parameter. Using Bayes’ Theorem, the posterior is given by

p(~θ)|d) =
p(~θ)p(d|~θ)
P (d)

(14)

where ~θ is an n dimensional vector in our parameter space of n parameters[31]. The first
term in the numerator, p(~θ) is known as the prior distribution, and quantifies knowledge
we already have about the system that should influence our estimation of its’ parameters.
In practice, in inference of BBHs, the priors are almost always uniform or isotropic dis-
tributions. The denominator, P (d), is essentially a normalisation factor ensuring that the
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posterior distribution integrates to unity. The crucial term is the likelihood for a given set
of parameters given the data, which is determined by

p(d|~θ) ∝ exp

(
− 1

2

∑
k=1,2

〈
hMk (~θ)− dk

∣∣hMk (~θ)− dk
〉)

(15)

where the inner product is that defined in (13), dk is the observed strain in the detector,
and hMk (t; ~θ) is the simulated detector response for a given set of parameters ~θ given by
(9). The SNR is given by

SNR =

√√√√∑
det

∫ fhigh

flow

|hdet(f, ~θ)|
Sdet(f)

df (16)

where the sum is over the detectors, and hdet(f, ~θ) is the signal in the detector, and Sdet(f)
is the noise. The posterior distributions are sampled stochastically using a Markov-Chain
Monte Carlo process and the Metropolis-Hasting algorithm. The qualitative idea behind
this is that a sampler random walks across the parameter space. At each iteration, a
random step in the parameter space is proposed, and the posterior is sampled at this new
point. If the posterior has a higher value, this new point is used as the starting point for the
next iteration. However if the posterior is lower, then the sampler only has a probability
to jump to this new step proportional to the ratio of the posteriors at the current and
proposed steps. In this way, after each iteration the distribution of samplers gets a step
closer to accurately representing the posterior.

Various methods of waveform generation (known as approximants) have been employed,
with varying degrees of computational intensity. In general, Post-Newtonian expansions are
used in the inspiral phase where the gravitational field is weak enough for approximations
to be sufficient. During the merger and ringdown, full numerical relativity simulations are
required as the curvature is sufficiently strong that Post-Newtonian approximations are
no longer valid[35][36]. These require significantly more computation time, and as such it
is only in recent years that waveforms describing the full inspiral, merger and ringdown
phases have become available.

1.5 Precession and its astrophysical importance

Considerable research has been done on studying non-spinning binaries and on non-precessing
binaries where the spins are aligned or anti-aligned with the orbital angular momentum
~̂
L[37], but it is only recently that a more complete study of the parameter space has
begun[38][39]. This is partly down to computational resources, as ignoring spin effects
leads to a reduced parameter space and less computationally intensive waveforms. There
are a unique set of challenges when considering binaries where the spins of the component
black holes are not aligned ~L, as due to relativistic effects, these binaries precess around

the axis of total angular momentum
~̂
J , giving a time dependence to the orbital plane of

the binary[40][41].
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Figure 6: [42]Illustration of a precessing binary system where the orbital and total angular
momenta are not fully aligned, and the system precesses around ~J .

Figure 7: Waveforms for three BBH mergers with m1 = 30, m2 = 10 and with spins only
in the x direction on the heavier black hole. The inclination is such that the binary is
viewed edge-on.

This causes the signal in the detector to have an overall amplitude modulation as a
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function of time due to the change in orientation of the source, and therefore the change
in direction of peak emission of GWs. This can be seen in Fig. 7, where we compare a
very slightly precessing system with a maximally precessing one. Due to the computational
intensity of dealing with both the generation of waveforms and inference process involving
precessing systems, significant efforts have been made to reduce the size of the parameter
space using the degenerecies between specific spin combinations to parametrise the spins
of a binary. The most successful of these is the adoption of two spin parameters[36][43]
that describe the whole binary system, where we replace the six spin parameters with two:

χeff =

(
S1

m1
+

S2

m2

)
· L̂

M
(17)

and

χp =
1

B1m2
1

max(B1S1⊥, B2S2⊥) (18)

where B1 = 2 + 3/(2q) and B2 = 2 + (3q)/2. These parameters effectively quantify the
amount of in-plane and out of plane spin of the total binary, removing large degenerate
portions of the parameter space. As different spin configuations within these parameters
are effectively degenerate, no loss of information occurs in this re-parametrisation. The
recent adoption of this parametrisation in the generation of template waveform banks (the
IMRPhenomPv2 waveforms which, we use in this work) has made exploring the precessing
parameter space computationally viable, as it reduces the computation time by an order
of magnitude. The results of these waveforms agree well when compared with waveforms
generated using the full spin parameter space (known as the Spinning Effective One Body
Numerical Relativity, or SEOBNR waveforms)[44][45], so the recent availability of a compu-
tationally efficient precessing waveform bank makes this an opportune time to conduct this
research. Indeed the first full survey of an isotropic distribution of spins for a large number
of simulations (200) has only very recently been published a matter of weeks ago[39].

The particular focus of this paper is on the challenges of inferring χp in precessing
systems. This parameter is of particular importance due to its astrophysical implications,
and as of yet there has been no comprehensive study into the effects of precession and its
amplitude modulation of the signal on the process of parameter estimation. The formation
methods of compact binary systems of stellar mass black holes are currently unknown,
and a variety of models have been proposed[46]. Of particular interest is whether the two
black holes formed from a common accreting system, or whether the binary was formed by
dynamical capture. The former model would imply that the spins on the black holes would
generally tend to be aligned with one another and with the orbital angular momentum,
however in the dynamical capture model we expect the spins to be more or less uniformly
distributed. Given the large number of expected detections over the coming years, a
thorough understanding of the detector’s response to precessing waveforms and an accurate
estimation of our ability to recover χp reliably will be crucial to answering these questions,
and maximising the scientific yield from this remarkable technology.
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2 Intrinsic degeneracies

2.1 Precessing waveforms

We first consider in more detail the effects of precession on a GW waveform. This is
important as understanding how precessive waveforms behave is key to understanding how
the detector will respond to these signals, and understanding the detector response is the
fundamental idea of parameter estimation. A closer look at equation (16), which essentially
quantifies the amount of precession in a given binary, shows that it takes values in the range
[0, 1], with the maximum reached when the spin on the larger BH is fully in-plane. Even for
a maximally precessing signal however, many possible configurations of polarisation and
inclination are possible which will affect the way the amplitude of the signal is modulated.

Figure 8: Waveforms for three BBH mergers with m1 = 30, m2 = 10 and with spins only
in the x direction on the heavier black hole. The inclination is such that the binary is
viewed edge-on.

We show this in Fig. 8, where from this particular perspective the precessive effect
appears largest in the case of the in-plane spin being 0.5, instead of the maximally pre-
cessing system with |~S| = 0.98. In this case, this is due to the fact that the inclination
angle is defined with respect to the total angular momentum. In the case of precessing
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binaries, ~L and ~J are not aligned, so when we say we are viewing a binary ’edge-on’, i.e.
at ι = π/2, the actual orbital plane of the system will not necessarily be edge-on. As a
result, it is not always the case that precession affects are most noticeable in systems with
the most precession, and a lot depends on the specific combination of source location and
the polarisation and inclination angles for a specific event.

The situation is further complicated by the fact that the phase, φc is an important
degree of freedom in precessing binaries, as shown in Fig. 9. In non-precessing binaries,
the phase is very much a trivial parameter which contains no interesting information about
the system, however in precessing binaries the phase has a significant affect on the signal
modulation.

Figure 9: Affect of phase on non-precessing and precessing waveforms. Precession adds
an extra degree of freedom in that the morphology of precessing waveforms is different for
different phases.

This opens up the possibility of many different degeneracies between binaries with
different intrinsic parameters but a certain combination of phase and source location, and
makes studying precessing waveforms more challenging. When considering precession it is
also important to note that heavier total mass binaries have considerably shorter inspiral
phases, and therefore fewer oscillation cycles within the detection frequency band. So while
they will have a stronger signal, there is less opportunity for precessive effects to manifest.

2.2 Matching and exploring the parameter space

An extremely useful and computationally cheap way to identify some of these degeneracies
is through the process of matching as defined in (13). In the PyCBC framework, the
match is maximised over extrinsic parameters such as distance and source location that
only affect the amplitude of a signal, and so is a useful tool for examining the similarities
in the morphologies of different waveforms.

A match takes values in the range [0, 1], with identical waveforms having a match of 1.
It is also important to note that the inclination parameter has a similar nature of that of
the initial phase, in that in matches of non-precessing binaries it can be maximised over
as it does not affect signal morphology, however once precession is added, waveforms at
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Figure 10: Matches between precessing and non-precessing waveforms for a range of incli-
nations and mass ratios.

different inclinations no longer match, further adding to the complexity of the parameter
space.

In this section we intend to get some idea of the areas in which we expect the detector
to be most sensitive to precession, and those in which precessing signals are intrinsically
degenerate with non-precessing waveforms. This is done by finding the match between
waveforms with and without in-plane spin for a range of parameters. In the case of a
strong match (> 0.95), it is unlikely that χp can be accurately and precisely recovered for
signals with those parameters due to an intrinsic similarity of the waveforms.

Fig. 10 shows how the matches between precessing and non-precessing waveforms
change with inclination for four different mass ratios. The dark regions of the match are
where the signals have significant mismatch, and the waveforms should be well distin-
guished, and the light regions are where the waveforms are effectively degenerate. It is
apparent that the degeneracy is far stronger for close to equal mass binaries, where only
maximally precessing systems at edge-on inclinations will have noticeably different wave-
forms. Here we plot the 0.97 match contour as it is generally expected that the advanced
LIGO detectors should be able to distinguish between waveforms with a match of 0.97.
For all but the most extreme mass ratios, a combination of significant in-plane spin (≥ 0.6)

15



Figure 11: Spin difference required for the match between precessing and non-precessing
waveforms to drop below 0.95. The spins on the second black hole change from left to
right, first with |~S2| = 0, then ~S2‖ = 0.95 and finally with ~S2⊥ = 0.95.

Figure 12: Match limit plots for a range of inclinations and phases for 4 polarisations.
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and/or strong inclination is necessary to have any significant deviation for systems with
high precession. It is important to remember here that as we change the inclination, the
overall strength of the signal will drop as the amplitude of the gravitational wave is lower
(with the peak at ι = 0), and the matching process does not account for this change in
signal strength.

In Fig. 11, we examine the effect of the spin on the lower mass black hole on matches
between precessing and non-precessing waveforms. In these figures, for a ranges of inclina-
tions and mass ratios, we find the minimum spin difference required for the match between
waveforms to drop below 0.95. This is an efficient way of quantifying the precessing degen-
eracy for a range of parameters. The dark regions are areas where only a small difference
in spin is required for the match to drop, and the light areas show where the waveforms
are degenerate. In Fig. 11 we compare results for systems with no spin, spin aligned with
~L and fully in-plane spin on the smaller black hole. The spin on the smaller black hole
appears to only have a significant effect the matches around an inclination of 1.5, where
the system is edge on, but other than that it does not drastically change the structure of
the parameter space. This is convenient as it indicates that inference results for systems
with | ~S2| = 0 should be broadly applicable to those with arbitrary spins on the smaller
black hole. It is also evident that the mass ratio does not appear to affect the shape of
the parameter space, but more the intensity with which the match changes as a function
of inclination. So we can expect the same behaviour at different mass ratios, just with the
degeneracies being weaker or higher for extreme and close mass ratios respectively.

Lastly, in Fig. 12 we explore the impact of polarisation and phase on the parameter
space, using the same technique as in Fig. 11. We select a high mass ratio binary here
(m1 = 55,m2 = 15) to highlight any prominent features of the parameter space. A full
range of inclinations and phases are shown for four polarisations: plus, mixed but plus
dominated, mixed but cross dominated, and cross polarisations. The region of extremely
high sensitivity at ι = π/2 is a result of the fact that there is no cross-polarised signal for
an edge-on binary. The parameter space appears to be highly structured, and dependent
on both phase and inclination. Overall the parameter space appears a lot smoother for plus
polarisations, and variations across it increase as we shift to a cross polarised signal. As
such we can expect to resolve spin parameters slightly better in cross polarised waveforms.
The figures also show that phase does have an effect on spin sensitivity, with small shifts
in phases changing the spin magnitudes by up to ≈ 0.3.

3 Detector response simulations

3.1 Inference pipeline

A large number of software injections were going to be necessary to generate any interesting
results due to the large size and complexity of the parameter space as revealed by the
match results. So it was key that they could be performed efficiently and in an organised
way. This required the construction of an inference pipeline which formed the bulk of the
computational work of the project. This was ultimately one bash script that would create
a new folder for each run, generate the injection file and run the inference MCMC. It also
saves the injected parameters as a python dictionary, plots all posteriors overlaid with
injected parameters, plots the injected waveform, and the recovered (maximum posterior,
or MAP waveform) and injected waveforms overlaid on the whitened detector strain data,
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and return matches between the MAP and injected waveforms. This meant that all the
relevant analysis and data processing needed for each inference run was fully automated.
A flow chart of this process is shown in Fig. 13. For the MCMC parameters, in order to
acheive a balance between computation time and result accuracy, 5,000 samplers were used
and 12,000 iterations, and the burn-in process was skipped. These parameters were kept
the same for all software injections.

Figure 13: Flow chart of the inference pipeline. The ellipses represent data files that were
generated during the pipeline and stored in case further analysis was necessary. The boxes
at the bottom represent the final output of the pipeline.

This project work was also split between a number of different LIGO clusters, as well
as work on several different local PCs, and so the pipeline along with all the relevant match
and precession scripts were maintained as part of a GitHub repository which meant that
the codes could be developed effectively and without conflict.

3.2 Inference results

In this section we present the results from a range of inference runs, attempt to assess the
effectiveness of spin estimation and compare the inference results with the match results
to evaluate how effective the match process is as a predictor of inference accuracy. For
all injections we set S1⊥ = 0.9 and | ~S2| = 0 with χp = 0.9, and cover a uniform range
of inclinations. We set the phase to be φ = 0., and the polarisation angle ψ = 0.8, so
the signals are of mixed polarisation, but slightly cross dominated. The match results
indicate that cross polarised signals generally have a higher spin resolution, but we want to
avoid the signal drop at ι = π/2, which is why a mixed but cross dominated polarisation
angle was selected. The source location and coalesence time were also kept fixed for all
injections. We also only examine high mass ratio binaries, as the match results indicate
that precession is not significant in equal mass ratio binaries. Prior distributions are all
uniform, with mass ranging [5, 80] and distance in the range [100, 1000], and sky location
and spin orientations all have isotropic priors.
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Figure 14: Posteriors for an injection with m1 = 50, m2 = 15, ι = 2.51, φ = 0, ψ = 0.8 at
a distance of 200Mpc. Prior distributions are included for the derived spin parameters χp
and χeff , which result from uniform spin magnitude and isotropic orientation distributions.
The red bar shows the injected value, with the black solid line showing the mean of the
posterior, and the black dashed line showing the 90% confidence intervals, which are the
standard error margins quoted on LIGO inference results.
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Figure 15: Posteriors for an injection with the same parameters as in Fig. 14, except here
with an inclination of ι = 0.63
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Figure 16: Strain plots for both H1 and L1 detectors. The top two graphs show the strain
data corresponding to the results in Fig. 14, the bottom two graphs correspond to Fig.
15. The green and red lines show the whitened strain data, the black line is the MAP
waveform and the injected waveform is shown in blue.

Out of a total of 20 software injections that were performed, there were only 5 instances
where the injected χp value fell within the 90% confidence interval. In Figs 14 and 15 we
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compare posteriors for two inferences, where χp was excluded and where it was recovered
moderately well, and we refer to these as A and B respectively. Even in the cases where the
injected value was within the 90% confidence intervals, it was always closer to the upper
bound than to the mean, and a mean χp greater than 0.65 was never found.

Neither sets of posteriors are consistently accurate, although overall the results of in-
jection A are overall significantly more accurate than those for B, with the exceptions of
χp and ι. The masses and source locations are recovered well, with the injected value
lying within the 90% confidence intervals. However the ’cost’ of recovering χp seems to
be having significant inaccuracies on a range of important parameters, with χeff , m2, dis-
tance and chirp mass all being excluded. To examine the source of this inaccuracy, in Fig
16 we plot the whitened detector strain with the signal embedded into it, overlaid with
the MAP waveform as recovered by the inference process, and the injected waveform. A
match is also performed between the MAP and injected waveforms in each detector frame.
This is a crucial part of the analysis, as it helps to distinguish between different sources of
inaccuracy. If the inaccuracies are due to either detector noise or some error in the MCMC
process, we should expect a low match between the MAP and injected waveform. However
it is also possible that due to the large number of parameters, the MCMC algorithm has
found certain combinations of different parameters that lead to an effectively degenerate
waveform. In this case, we would expect a high match between the MAP waveform and
injected waveform, despite the fact that they have vastly different parameters.

The results shown in Fig. 16 show a stronger match for A, where the majority of
parameters were more accurately recovered. In particular, for B, L1 shows a low match
of 0.93 between MAP and injected waveforms. This is likely due to the precessive effects
which are most apparent around −0.4s, where the injected signal is almost entirely flat, and
later on during the inspiral around −0.2s where there is noteable disagreement between the
signals. In this case, it is clear that the inference process has not found an optimal template
waveform to replicate the injected signal. However in the case of A there is a strong match
between waveforms, and it is clear from the strain plot that the MAP waveform matches the
strain data extremely well. There is, however, a mild disagreement during the late merger
and ringdown, which is the source of the mismatches of 0.01 and 0.02. Since the match is
so strong, the waveforms themselves must be intrinsically degenerate up to deviation that
occurs at the merger.

If two signals are degenerate for the majority of the inspiral and merger, and only
during the end of the merger and ringdown do they differ, it will be extremely difficult for
LIGO detectors to differentiate between them, as the very short time period where there
is any mismatch will be swamped by noise. Returning to Fig. 14, we can see that even
though the match is strong, there are significant inaccuracies on χp and ι. So in A and B
we have examples of each inaccuracy as described earlier - one down to poor signal recovery
and one down to an intrinsic degeneracy. In Figs 17 and 18, results are shown for case C,
which was selected as its waveform had the strongest visible precessive effects in both H1
and L1 detector frames.
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Figure 17: Posteriors for injection C, which has the same parameters as in Fig. 14, but
with an inclination of ι = 1.26 and at a distance of 800Mpc.
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Figure 18: Strain plot of injection C, a waveform with strong precessive modulation.

From Fig. 18 it can be seen that the waveform shows strong modulation, with the
amplitude of the signal dropping significantly towards the end of the inspiral and just
before the merger, implying that this would be an ideal signal to recover a high value of χp
from. The posteriors shown in Fig. 17 are mostly accurate, with the majority of injected
parameters lying inside the 90% confidence intervals, however once again χp is excluded,
and significantly underestimated. The match values shown in Fig. 18 are strong, with
both detectors giving a match of 0.96 between the injected and MAP waveforms. This is
further evidence of an intrinsic degeneracy that prevents high χp MAP values from being
found. For all posteriors shown, both φ and ψ are broadly uniform, and in the case where
they are not uniform, they are largely inaccurate. However in section 2 it was observed
that ψ and especially φ have a significant effect on the structure of the parameter space,
and the match between precessing and non-precessing waveforms.

One possible explanation for this uniformity is that for each stochastically selected
phase and polarisation, the MCMC algorithm readily finds a good match between the
injected signal and the strain data simply by tweaking the other remaining parameters
slightly. If this is the case, since there are a larger number of waveforms in the template
bank with lower values of χp (as shown in the prior distributions), if these waveforms
can still match the signal well just by slightly changing inclination, source location and
masses, we would expect the MCMC algorithm to favour lower values of χp but with
slightly larger uncertanties on the other posteriors. This explanation is exemplified by
the waveforms in Fig. 8, where it is shown that the magnitude of the precessive effect
is not necessarily proportional to χp. It is also interesting to note that χeff parameters
are generally relatively accurate, which implies it is mainly spin magnitude that is being
underestimated, but the orientations are recovered accurately.
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3.3 Inclination and precession

Next we examine the effect of inclination on χp recovery. Software injections were per-
formed for a range of inclinations at two distances, 200Mpc and 800Mpc, which simulate a
strong and weak signal respectively. Posteriors for χp and χeff are shown in Fig. 19 for 6
inclinations in the range [0, π], with the injected values shown by the red bar. Interestingly
there is no apparent correlation between the trends for χp at 200Mpc and at 800Mpc. If
anything the trends appear to be opposite, with the most greater accuracy at face-on for
the signals at 200Mpc, and greatest accuracy close to edge-on for the 800Mpc signals. As
in the previous results, χeff is recovered consistently well with the exception of two results
around ι ≈ 2 in the 200Mpc signals, again implying that spin orientation is accurate, but
magnitude is underestimated. Therefore there appears to be no clear correlation between
χp and χeff accuracy, although overall the 200Mpc runs are slightly less inaccurate than
the 800Mpc signals, likely due to the stronger signal strength.

Figure 19: Comparisons of derived spin parameters as a function inclination for strong and
weak signals. All other parameters are kept the same as listed in Fig. 14.

In Fig. 20 we attempt to identify how well the posteriors in Fig. 19 confirm the
predicted trends from the match results in Figs. 10 and 11. This is done by plotting
the match between the MAP and injected waveforms for each detector, along with the χp
inaccuracy. If the match process were a reliable method of predicting inference results, the
posteriors for χp around inclinations of 1 to 2 should be the most accurate, as precessing
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Figure 20: Match between MAP and injected waveforms along with spin inaccuracy for
the 200Mpc and 800Mpc runs as a function of inclination.

waveforms are most distinct from precessing ones here. So we would expect the spin
inaccuracies to drop to a minimum around the face-on inclination. However the 200Mpc
results in fact show the opposite trend, and inaccuracy of the 200Mpc signals actually
peaks around this area. The 800Mpc shows a different trend, with the χp inacurracy being
roughly constant, except from one result at ι = 1.9. These results imply that the matching
process does not reliably predict inference results, at least for χp estimation. Fig 20. shows
the match between the MAP and injected waveforms is strongest at edge-on, implying the
inference process is working most effectively for these inclinations. The other key result
though is that the spin inaccuracy and matches shown in Fig 20 are not clearly correlated
with each other. This again indicates that even when the inference process recovers a MAP
waveform with a strong match with the injected waveform, it is not necessarily a waveform
that faithfully represents the parameters of the original signal due to the abundance of
degeneracies.

3.4 Impact of Virgo

Finally we briefly look toward the influence of the upcoming Virgo detector on the recovery
of spin parameters, particularly χp. The main contribution Virgo is expected to add to
the network is dramatically improved source location due to an added trianglulation effect,
however it is also interesting to consider whether it will have any effect on recovery of other
parameters. Results for a range of signals injected at 800Mpc with all parameters kept the
same, except with Virgo now included in the inference process, are shown in Fig. 21. The
χp results are once again consistently inaccurate, with the injected value being exluced for
every run, in fact making this series of injections the least accurate overall.
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Figure 21: Plots showing χp and χeff for a range of inclinations at 800Mpc with the
VIRGO detector included in the inference process.

Figure 22: A heavily precessing waveform in three detector frames, H1, L1 and Virgo.
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However in this case, the posteriors for χp show a clearer trend as a function of incli-
nation, with the posteriors around face-on being pulled up towards the injected value. So
given these results, it appears that adding Virgo to the network makes the inference results
slightly more consistent, but no more accurate. The results for χeff are almost identical
to the runs without Virgo, which indicates that Virgo is unlikely to have any significant
impact on spin estimation. This is investigated further in Fig. 21, where we show the
detector response to a heavily precessing waveform (with the same parameters as used
previously, except with ψ = 2.8, ι = 1.89 and φ = 1.5) for all three detectors. The signal,
especially the precession modulation is very similar in all three detectors, so adding Virgo
to the network does not provide significant additional information to the process that will
impact spin paramter recovery. As a binary system precesses during merger, the signal
that is modulated in one polarisation essentially leaks into another, at a different inclina-
tion. This would mean that at certain combinations of source location and inclination, two
detectors oriented at orthogonal polarisations should give ideal χp resolution as the signal
modulated in one detector would appear in the other. However the data in Fig. 22 shows
that this is not the case for the relative orientations of H1, L1 and Virgo. This is by no
means a conclusive study however, as we only consider a fixed phase, polarisation, source
location, mass ratio and total mass, and it is easily possible that other configurations of
these parameters could lead to different trends.

4 Conclusions

Overall the results indicate that the current inference methods consistently underestimate
values of χp, with all but 5 out of the 20 inference runs excluding the injected value of
χp. The match results and waveform plots demonstrate that the phase of the GW signal
is an important parameter in precessing systems unlike in non-precessing systems, leading
to an extra degree of freedom in precessing systems. The matching process was used
to highlight the way in which mass ratios, polarisations, inclinations and phases affect
precessing waveforms, particularly our ability to distinguish bewteen precessing and non-
precessing signals. Degenerate areas of the parameter space were also identified using this
technique, and it was shown that for near equal mass ratios, precessing and non-precessing
waveforms are effectively entirely degenerate. It was also shown that other parameters
such as source location, polarisation and inclination affect the way that the modulation
effect manifests itself in a specific signal. This leads to a key observation that the strength
of signal modulation in a GW waveform is not necessarily proportional to the amount of
precession in the binary itself.

The inference pipeline used to perform parameter estimation was then described, and
a series of injections with high mass ratio and high χp were injected into detector noise.
The standard inference process was performed, and results were compared for a case of χp
being recovered comparably well, and χp being excluded. Neither sets of posteriors were
fully accurate, but the case of χp being excluded actually provided more accurate results
on the whole. Inference results were presented for a signal which appeared to exhibit
high precession, however the MAP values on this signal still excluded the injected value
of χp while still showing a strong match (0.96) with the injected signal. Posteriors of
derived spin parameters were shown for a full range of inclinations for signals at 200Mpc
and 800Mpc, and their results were compared with each other and with the predictions
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made by the matches. No clear correlations between any of these were observed, indicating
that the relationship between matches and inference results is more complicated than
previously thought. Finally a set of inference runs including the Virgo detector at a range
of inclinations were presented and compared with previous results without Virgo. These
results suggested that Virgo will not significantly improve the accuracy on χp due to the
fact that the morphology of the signal and the amplitude modulation is the same in the
Virgo detector as in H1 and L1. Although the specific set of parameters used in these
injections greatly limits the generality of this result.

Two explanations were proposed for the failure to accurately infer χp, one being that
the inference method is not working properly, and the other that there are so many intrinsic
degeneracies in precessing waveforms that the inference process cannot distinguish between
them. A way of distinguishing between these was also proposed, by performing a match
between the recovered MAP waveform and the injected signal. This match was consistently
high despite the inaccuracies in the posteriors, and so the source of the inaccuracy is likely
to be intrinsic degenerecy. If these results are correct, this has significant implications for
the future of spin estimation, as even improvements in detector accuracy and inference
methodologies are unlikely to be able to make significant advancements in spin recovery
if the signals are inherently degenerate. Especially if two signals have a good match for
the majority of the inspiral and early merger, if there is only significant disagreement
around the end of the merger, detectors will struggle to resolve this difference due to noise.
This would also explain the apparent lack of consistency between match results and spin
inaccuracy results, as the ability to recover χp appears to be independent of the match
between precessing and non-precessing waveforms.

There is significantly more work to be done in this area, and this comes nowhere close
to a conclusive study. Due to time constraints, this work only explored a very small sliver
of the overall parameter space. However, while it is certainly possible that the results
presented here are specific to this region, given that the trend of excluding χp is so strong
in these results, it is unlikely to be entirely unique. During the project, individual software
injections were performed for a wider range of parameters than those shown here and the
general trend of χp being excluded was observed there as well, however this is now anecdotal
evidence and much closer analysis is needed, both in the form of larger scope studies of the
parameter space and more targeted studies to understand better the causes of incorrect
parameter inference. As a final point, many of the posteriors of χp shown in this work are
extremely similar to those shown in the recent detection papers[1][2] despite the fact that
in many cases the injected parameters were excluded by the inference process. If there is
indeed a bias here towards certain spin orientations or magnitudes, it is crucial that this
is identified in order ensure that astrophysical conclusions drawn from current and future
LIGO observations are well grounded.

5 Acknowledgements

I would firstly like to thank Steve Fairhurst for his patient and warm supervision. Our
meetings were always informative and enjoyable and I have learned a lot from him over the
course of the project. I would also like to give a huge thanks to Collin Capano, without
whom this report would have been significantly shorter, for being extremely generous with
his time and helping me navigate the labyrinth of LIGO codes. Finally I would like to

29



thank Callum Booth for being my partner in crime over the last 9 months.

6 Reflective Statement

This project has certainly taught me the value of time, and what a scarce resource it is.
These kinds of things seem to suck up an endless amount of time for very little apparent
progress, and knowing when to call it and do something else for a few hours is something
I’m not so great at. Something I need to learn in the future is to figure out a way to switch
off and reset once in a while. Overall I did have a great time working on it. The LIGO
collaboration is truly awesome and this was a really great opportunity to be a part of it. I
certainly learnt a lot of useful technical skills, especially learning to use GitHub from the
command line, and my programming improved dramatically over the course of the project.

References

[1] B. P. Abbott et. al. Observation of gravitational waves from a binary black hole merger.
Physical Review Letters, 116(6), Feb 2016.

[2] B. P. Abbott et. al. GW151226: Observation of gravitational waves from a 22-solar-
mass binary black hole coalescence. Physical Review Letters, 116(24), Jun 2016.

[3] A. Einstein. Nherungsweise integration der feldgleichungen der gravitation. Sitzungs-
berichte der Kniglich Preussischen Akademie der Wissenschaften Berlin, (688-696),
1916.

[4] A. Einstein. ber gravitationswellen. Sitzungsberichte der Kniglich Preussischen
Akademie der Wissenschaften Berlin, (154-167), 1918.

[5] W. Steinicke. Einstein and the gravitational waves. Astronomische Nachrichten,
326(7), 2005.

[6] N. Rosen A. Einstein. On gravitational waves. Journal of the Franklin Institute,
223(43-54), 1937.

[7] J. H. Taylor and J. M. Weisberg. A new test of general relativity - gravitational
radiation and the binary pulsar PSR 191316. The Astrophysical Journal, 253:908, Feb
1982.

[8] Marica Branchesi. Multi-messenger astronomy: gravitational waves, neutrinos, pho-
tons, and cosmic rays. Journal of Physics: Conference Series, 718:022004, May 2016.

[9] B. P. Abbott et. al. Prospects for observing and localizing gravitational-wave transients
with advanced ligo and advanced virgo. Living Reviews in Relativity, 1:19, Dec 2016.

[10] B. P. Abbott et al. Tests of general relativity with GW150914. Physical Review Letters,
116(22), May 2016.

[11] Nicolás Yunes, Kent Yagi, and Frans Pretorius. Theoretical physics implications of
the binary black-hole mergers GW150914 and GW151226. Physical Review D, 94(8),
Oct 2016.

30
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ald P. Pfeiffer, Mark A. Scheel, Béla Szilágyi, Nicholas W. Taylor, and Anil Zenginoglu.
Effective-one-body model for black-hole binaries with generic mass ratios and spins.
Phys. Rev. D, 89:061502, Mar 2014.

[46] B. P. Abbott et al. Astrophysical implications of the binary black-hole merger
gw150914. The Astrophysical Journal Letters, 818(2):L22, 2016.

33

https://phys.org/news/2015-03-insights-black-hole-collisions.html
https://phys.org/news/2015-03-insights-black-hole-collisions.html

	Introduction
	A Brief History
	Gravitational waves and their sources
	LIGO
	Parameter estimation
	Precession and its astrophysical importance

	Intrinsic degeneracies
	Precessing waveforms
	Matching and exploring the parameter space

	Detector response simulations
	Inference pipeline
	Inference results
	Inclination and precession
	Impact of Virgo

	Conclusions
	Acknowledgements
	Reflective Statement

